In Vivo Differentiation of Mesenchymal Stem Cells into Insulin Producing Cells on Electrospun Poly-L-Lactide Acid Scaffolds Coated with Matricaria chamomilla L. Oil
نویسندگان
چکیده
OBJECTIVE This study examined the in vivo differentiation of mesenchymal stem cells (MSCs) into insulin producing cells (IPCs) on electrospun poly-L-lactide acid (PLLA) scaffolds coated with Matricaria chammomila L. (chamomile) oil. MATERIALS AND METHODS In this interventional, experimental study adipose MSCs (AMSCs) were isolated from 12 adult male New Zealand white rabbits and characterized by flow cytometry. AMSCs were subsequently differentiated into osteogenic and adipogenic lines. Cells were seeded onto either a PLLA scaffold (control) or PLLA scaffold coated with chamomile oil (experimental). A total of 24 scaffolds were inserted into the pancreatic area of each rabbit and placement was confirmed by ultrasound. After 21 days, immunohistochemistry analysis of insulin-producing like cells on protein levels confirmed insulin expression of insulin producing cells (IPSCs). Real-time polymerase chain reaction (PCR) determined the expressions of genes related to pancreatic endocrine development and function. RESULTS Fourier transform infrared spectroscopy (FTIR) results confirmed the existence of oil on the surface of the PLLA scaffold. The results showed a new peak at 2854 cm(-1) for the aliphatic CH2 bond. Pdx1 expression was 0.051 ± 0.007 in the experimental group and 0.009 ± 0.002 in the control group. There was significantly increased insulin expression in the scaffold coated with chamomile oil (0.09 ± 0.001) compared to control group (0.063 ± 0.009, P≤0.05). Both groups expressed Ngn3 and Pdx1 specific markers and pancreatic tissue was observed at 21 days post transplantation. CONCLUSION The pancreatic region is an optimal site for differentiation of AMSCs to IPCs. Chamomile oil (as an antioxidant agent) can affect cell adhesion to the scaffold and increase cell differentiation. In addition, the oil may lead to increased blood glucose uptake in pathways in the muscles, liver and fatty tissue of a diabetic animal model by some probable molecular mechanisms.
منابع مشابه
Preparation and investigation of polylactic acid, calcium carbonate and polyvinylalcohol nanofibrous scaffolds for osteogenic differentiation of mesenchymal stem cells
Objective(s): In this study, the effect of electrospun fiber orientation on proliferation and differentiation of mesenchymal stem cells (MSCs) was evaluated. Materials and Methods: Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polylactic acid (PLA), poly (vinyl alcohol) (PVA) and calcium carbonate nanoparticles (nCaP). The surface morphology of prepared nanofibrou...
متن کاملComparison of Proliferation and Osteoblast Differentiation of Marrow-Derived Mesenchymal Stem Cells on Nano- and Micro-Hydroxyapatite Contained Composite Scaffolds
Bones constructed by tissue engineering are being considered as valuable materials to be used for regeneration of large defects in natural bone. In an attempt to prepare a new bone construct, in this study, proliferation and bone differentiation of marrow-derived mesenchymal stem cells (MSCs) on our recently developed composite scaffolds of nano-, micro-hydroxyapatite/ poly(l-lactic acid) were ...
متن کاملCo-culture of Umbilical Cord-derived Hematopoietic and Mesenchymal Stem Cells on Protein-Coated poly-L-Lactic Acid Nanoscaffolds
Background and purpose: Umbilical cord blood (UCB) is a source of Hematopoietic stem cells (HSCs) and has received a lot of attention due to its availability, renewal capacity, proliferation rate, and differentiation potential. The main limitation of using these cells is their low quantity in one unite of UCB. To overcome this, HSCs co-culturing with UCB derived mesenchymal cells (MSCs) is a pr...
متن کاملRat Bone Marrow Mesenchymal Stem Cell Differentiation to Insulin Producing Cells and Evaluation their Responses in Vitro and in Vivo
Background In recent years, many researchers haveattempted to cure diabetes by using stem cells technology. Stem cells from different sources have capabilityto differentiateinto insulin producing cells (IPCs) by different methods. The obstaclesof these methods aretheirexpensive materials and complexity ofmethodswhichare practicallydisadvantagesfor producing enough transplantableIPCs that can ...
متن کاملThe effect of electrospun poly(lactic acid) and nanohydroxyapatite nanofibers’ diameter on proliferation and differentiation of mesenchymal stem cells
Objective(s): Electrospun nanofibrous mats of poly(lactic acid) (PLA) and nanohydroxyapatite (nano-HA) were prepared and proliferation and differentiation of mesenchymal stem cells on the prepared nanofibers were investigated in this study. Materials and Methods: PLA/nano-HA nanofibers were prepared by electrospinning. The effects of process parameters, such as nano-HA concentration, distance, ...
متن کامل